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Radio-frequency spectroscopy of a strongly interacting spin-orbit-coupled Fermi gas
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We investigate experimentally and theoretically radio-frequency spectroscopy and pairing of a spin-orbit-
coupled Fermi gas of 40K atoms near a Feshbach resonance at B0 = 202.2 G. Experimentally, the integrated
spectroscopy is measured, showing characteristic blue and red shifts in the atomic and molecular responses,
respectively, with increasing spin-orbit coupling. Theoretically, a smooth transition from atomic to molecular
responses in the momentum-resolved spectroscopy is predicted, with a clear signature of anisotropic pairing at
and below resonance. Our many-body prediction agrees qualitatively well with the observed spectroscopy near
the Feshbach resonance.
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I. INTRODUCTION

Owing to the unprecedented controllability of interaction
and dimensionality, strongly interacting ultracold Fermi gases
have proven to be an ideal desktop system in the study of
pairing and superfluidity [1,2]. Using magnetic field Fesh-
bach resonances, a crossover from Bose-Einstein condensates
(BECs) to Bardeen-Cooper-Schrieffer (BCS) superfluids was
successfully demonstrated in 2004 [3,4] and the pairing
properties at the crossover have been characterized in a number
of means since then, including particularly radio-frequency
(rf) spectroscopy [5–7]. The latest development in this field
is the realization of a synthetic spin-orbit coupling, which
couples the pseudospin of neutral atoms to their orbital motion
[8–12]. Such a spin-orbit coupling is responsible for a variety
of intriguing phenomena in different fields of physics. A
well-known example is the recently discovered topological
insulators in solid state [13,14]. In the context of ultracold
atomic Fermi gases, it is therefore natural to ask: What is
the consequence of the interplay of strong interaction and
spin-orbit coupling?

In this paper, we investigate rf spectroscopy of a strongly
interacting spin-orbit-coupled Fermi gas of 40K atoms. The
previous works on spin-orbit-coupled Fermi gas explored
essentially the noninteracting limit [11,12]. The current work
is a demonstration of effects of spin-orbit coupling in an
interacting Fermi gas. In recent BEC-BCS experiments, rf
spectroscopy has been particularly useful in studying pairing
and superfluidity, yielding information about the pairing gap
[5] and pair size [6]. Furthermore, momentum-resolved rf
spectroscopy gives direct information of the low-energy ex-
citation spectrum and quasiparticles [7]. Here, by developing
a many-body T-matrix theory we show theoretically that
both atomic and molecular responses in the rf spectroscopy,
arising, respectively, from free fermionic atoms and bosonic
molecules, are greatly modified by spin-orbit coupling. In
particular, the resulting anisotropic pairing, dominated by the
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two-body effect on the BEC side of the Feshbach resonance
and by the many-body effect near resonance, is clearly evident
in the momentum-resolved spectroscopy. Experimentally, we
measure the integrated rf spectroscopy and report characteris-
tic blue and red shifts in the atomic and molecular responses,
respectively, which are in good agreement with theory.

The remainder of this paper is organized as follows. In
Sec. II, we describe briefly the experimental setup and the
model Hamiltonian. In Sec. III, we present the experimen-
tal and theoretical results of radio-frequency spectroscopy
near Feshbach resonances. We introduce briefly a many-
body T-matrix theory in Sec. III A, and in Secs. III B and
III C we discuss, respectively, the integrated spectroscopy of
bound molecules and the momentum-resolved spectroscopy
of fermionic pairs at resonance. The comparison between
experiment and theory is reported in Sec. III D. Finally, we
conclude in Sec. IV. Appendix is devoted to solving the many-
body T-matrix theory within the pseudogap approximation.

II. EXPERIMENTAL SETUP AND MODEL HAMILTONIAN

The experimental setup has been described in our previous
works [11,15–17], in which a Bose-Fermi mixture of 40K
and 87Rb atoms is cooled using well-developed evaporative
and sympathetic cooling techniques in a quadrupole-Ioffe
configuration magnetic trap, and is transported into an optical
trap. A degenerate Fermi gas of about N � 2 × 106 40K atoms
in the |F = 9/2,mF = 9/2〉 internal state is evaporatively
cooled to temperature T/TF � 0.3 with bosonic 87Rb atoms,
where TF is the Fermi temperature defined by TF = EF /kB =
(6N )1/3h̄ω̄/kB and ω � 2π × 130 Hz is the geometric mean
trapping frequency. 87Rb atoms in the mixture are then
removed by a 780-nm laser pulse. Subsequently, fermionic
atoms are transferred into the lowest hyperfine state |F =
9/2,mF = −9/2〉 via a multiphoton rapid adiabatic passage
induced by a radio-frequency field at lower magnetic field. To
prepare a two-component 40K Fermi gas in an equal mix-
ture of |↑〉 = |F = 9/2,mF = −7/2〉 and |↓〉 = |F = 9/2,

mF = −9/2〉 states, a homogeneous bias magnetic field,
produced by the quadrupole coils (operating in the Helmholtz
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FIG. 1. (Color online) (a) and (b) Experimental realization of a
strongly interacting Fermi gas of 40K atoms with spin-orbit coupling.
(c) The integrated rf spectroscopy below the Feshbach resonance (at
B = 201.6 G and as � 2215.6aB , where aB is the Bohr radius), in
the presence (red solid circles) and absence (blue open circles) of the
spin-orbit coupling. The Raman detuning is δ = 0. The dimensionless
interaction parameter 1/(kF as) � 0.66. The fraction is defined as
N−5/2/(N−5/2 + N−7/2), where N−5/2 and N−7/2 are obtained from
the TOF absorption image. SOC, spin-orbit coupling.

configuration), is raised to about B ≈ 219.4 G and then a
radio-frequency ramp around 47.45 MHz is applied for 50 ms.
To create strong interactions, the bias field is ramped from
204 G to a value near the B0 = 202.2 G Feshbach resonance
at a rate of about 0.08 G/ms.

We create spin-orbit coupling using the Raman process
[8,11], as illustrated in Figs. 1(a) and 1(b). A pair of Raman
beams from a Ti-sapphire laser counterpropagates along the x̂

axis and couples the two spin states. The intensity of beams is
I = 50 mW and their frequencies are shifted, respectively,
by 75 and 120 MHz, using two single-pass acousto-optic
modulators. These two Raman beams intersect in the atomic
cloud with 1/e2 radii of 200 μm and are linearly polarized
along ẑ and ŷ axis directions, respectively. The momentum
transferred to atoms during the Raman process is |qR| =
2kR sin(θ/2), where kR = 2π/λR is the single-photon recoil
momentum, λR = 772.1 nm is the wavelength, and θ = 180◦
is the intersecting angle of two Raman beams. In the second
quantization, this Raman process may be described by the
term,

HR = �R

2

∫
dr[ψ†

↑(r)ei2kRxψ↓(r) + H.c.], (1)

where ψ†
σ (r) is the creation field operator for atoms in the

spin-state σ = ↑,↓ and �R is the coupling strength of Raman
beams. For a detailed discussion on the Raman coupling

strength �R , we refer to the recent theoretical work by Wei
and Mueller [18].

In this paper, we use a larger bias magnetic field than the
one used in our previous study [11], in order to create strong
interactions. Due to a decoupling of the nuclear and electronic
spins, the Raman coupling strength decreases with increasing
the bias field [18]. To compensate this reduction, here we use
a smaller detuning of the Raman beams with respect to the
atomic “D1” transition.

To see clearly the spin-orbit coupling in our setup, it is
convenient to take a gauge transformation, ψ↑(r) = eikRx
↑(r)
and ψ↓(r) = e−ikRx
↓(r). Our system may therefore be
described by a model Hamiltonian H = H0 + Hint, where

H0 =
∑

σ

∫
dr
†

σ (r)
h̄2(k̂ ± kRex)2

2m

σ (r)

+ �R

2

∫
dr[
†

↑(r)
↓(r) + H.c.] (2)

is the single-particle Hamiltonian and

Hint = U0

∫
dr
†

↑(r)
†
↓(r)
↓(r)
↑(r) (3)

describes the contact interaction. In the first line of Eq. (2)
we have used k̂ = i∇, “+” for σ = ↑ and “−” for σ = ↓.
Using the Pauli matrices σx , σy , and σz, the single-particle
Hamiltonian may be rewritten in a compact form,

H0 =
∫

dr�†

[
h̄2

(
k2
R + k̂2

)
2m

+ hσx + λkxσz

]
�, (4)

where the spinor field operator �(r) ≡ [
↑(r),
↓(r)]T . We
have defined a spin-orbit coupling constant λ ≡ h̄2kR/m and
an “effective” Zeeman field h ≡ �R/2.

To create a strongly interacting Fermi gas with spin-orbit
coupling, after the bias magnetic field is tuned to a final
value B (which is varied), we ramp up adiabatically the
Raman coupling strength in 15 ms from zero to its final value
� = 1.5ER with Raman detuning δ = 0, where the recoil
energy ER ≡ h̄2k2

R/(2m) � h × 8.36 kHz. The temperature
of the Fermi cloud after switching on the Raman beams
is at about 0.6TF , as in our previous measurement for a
noninteracting spin-orbit-coupled Fermi gas [11]. The Fermi
energy are EF � 2.5ER and the corresponding Fermi wave
vector is kF � 1.6kR .

III. RADIO-FREQUENCY SPECTROSCOPY

To characterize the strongly interacting spin-orbit-coupled
Fermi system, we apply a Gaussian shape pulse of the rf
field with a duration time about 400 μs and frequency ω to
transfer the spin-up fermions to an unoccupied third hyper-
fine state |3〉 = |F = 9/2,mF = −5/2〉. The Gaussian shape
pulse is generated by the voltage-controlled rf attenuators.
The Gaussian envelope hence results in the elimination of the
side lobes in rf spectra. The Hamiltonian for rf coupling may
be written as

Vrf = V0

∫
dr[e−ikRxψ

†
3(r)
↑(r) + H.c.], (5)
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where ψ
†
3(r) is the field operator which creates an atom in |3〉

and V0 is the strength of the rf drive. The effective momentum
transfer kRex in Vrf results from the gauge transformation.
After the rf pulse, we abruptly turn off the optical trap, the
magnetic field and the Raman laser beams, and let the atoms
ballistically expand for 12 ms in a magnetic field gradient
applied along ẑ and take time-of-flight (TOF) absorption image
along ŷ. We measure the spin population of the final state |3〉
for different rf frequencies to obtain the rf spectra �(ω).

For a weak rf drive, the number of transferred fermions
can be calculated using linear response theory. At this point, it
is important to note that the final-state interactions for 40K
atoms in the third state and in the spin-up or spin-down
state is typically small [1]. Theoretically, the rf transfer
strength at a given momentum is therefore determined entirely
by the single-particle spectral function of spin-up atoms
A↑↑:

�(k,ω) = A↑↑(k + kRex,εk − μ − h̄ω + h̄ω3↑)

× f (εk − μ − h̄ω + h̄ω3↑), (6)

where εk ≡ h̄2k2/(2m), μ is the chemical potential of the
spin-orbit system, h̄ω3↑ � h̄ × 47.1 MHz is the energy split-
ting between the third state and the spin-up state, f (x) ≡
1/(ex/kBT + 1) is the Fermi distribution function, and we
have taken the coupling strength V0 = 1. For 6Li atoms,
however, the final state effect is usually significant [6]. The
rf transfer strength will no longer be simply determined by the
single-particle spectral function.

Experimentally, one could measure the momentum-
resolved rf spectroscopy along the x direction �(kx,ω) ≡∑

ky ,kz
�(k,ω), or, after integration obtain the fully integrated

rf spectroscopy �(ω) ≡ ∑
k �(k,ω). Due to small signal-to-

noise ratio, we currently have difficulty obtaining momentum-
resolved rf signal experimentally.

In Fig. 1(c), we show that the integrated rf spectroscopy of
an interacting Fermi gas below the Feshbach resonance, with
or without spin-orbit coupling. Here, we carefully choose the
one photon detuning of the Raman lasers to avoid shifting
Feshbach resonance by the Raman laser on the bound-to-
bound transition between the ground Feshbach molecular state
and the electronically excited molecular state. The narrow
and broad peaks in the spectroscopy should be interpreted,
respectively, as the rf response from free atoms and fermionic
pairs. With spin-orbit coupling, we find a systematic blue shift
in the atomic response and a red shift in the pair response.
The latter is an unambiguous indication that the properties of
fermionic pairs are strongly affected by spin-orbit coupling. In
order to make sure that the observed shifts in the spectrum are
induced by the spin-orbit coupling, instead of any one-photon
effects, we carried out the same experiment in the presence of
a pair of Raman laser beams that possess the same one-photon
detuning but a much larger two-photon Raman detuning as
compared to that used in Fig. 1(c). The large Raman detuning
effectively destroys the spin-orbit coupling. In Fig. 2, we
compare the spectrum obtained under such Raman laser beams
with the one obtained without the Raman beams. The two
spectra are essentially identical. This clearly demonstrates that
the shifts observed in Fig. 1(c) arise from spin-orbit coupling.

ω

FIG. 2. (Color online) rf spectra obtained with (red open circles)
and without (black solid circles) Raman laser beams with a large two-
photon detuning of δ = 500 kHz, but the same one-photon detuning
as in Fig. 1(c).

A. Many-body T-matrix theory

Let us now consider theoretical understanding of the ob-
served red shift for fermionic pairs. Near Feshbach resonances,
it is important to treat atoms and fermionic pairs on an equal
footing. For this purpose, it is convenient to develop a many-
body theory within the T-matrix approximation by summing
all ladder diagrams [19,20]. In the presence of spin-orbit
coupling, it is necessary to define a finite-temperature Green
function,

G(r,r′; τ > 0) ≡ −〈�(r,τ )�†(r′,0)〉, (7)

which is a 2 by 2 matrix even in the normal state. We
adopt a partially self-consistent T-matrix scheme and take one
noninteracting and one fully dressed Green function in the
ladder diagrams [20]. The summation of all ladder diagrams
leads to the Dyson equation,

G(K) = [
G−1

0 (K) − �(K)
]−1

, (8)

where the self-energy is given by

�(K) =
∑
Q

[t(Q)(iσy)G̃0(K − Q)(iσy)]. (9)

Here

t(Q) ≡ U0

1 + U0χ (Q)
(10)

is the (scalar) T matrix with a two-particle propagator,

χ (Q) = 1

2

∑
K

Tr[G(K)(iσy)G̃0(K − Q)(iσy)], (11)

and the noninteracting Green function,

G0(K) = [iωm − εk + μ − ER − hσx − λkxσz]
−1 . (12)

For convenience, we have used the short notations K ≡
(k,iωm), Q ≡ (q,iνn), and

∑
K ≡ kBT

∑
k,ωm

, and ωm and
νn are, respectively, the fermionic and bosonic Matsubara
frequencies. We have also defined a Green function for holes,
G̃(K) ≡ −[G(−K)]T .
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Equations (8)–(12) generalize the earlier T-matrix dia-
grammatic theory without spin-orbit coupling [20]. Here the
modification arising from the spin-orbit coupling includes
the use of Green functions in a general 2 by 2 matrix form
and accordingly the appearance of the vertex iσy in Eqs. (9)
and (11). The derivation of these T-matrix equations is too
technical and is not the focus of this work. Therefore, we will
discuss the details of the derivation elsewhere.

In general, the self-consistent T-matrix equations are
numerically difficult to solve. At a qualitative level, however,
we may adopt a pseudogap decomposition for the T matrix
[21] and obtain a set of coupled equations for the chemical
potential and pairing gap. In Appendix, we discuss in detail the
pseudogap approximation. By solving the coupled equations
[see, i.e., Eqs. (A8) and (A9)], we calculate the single-particle
spectral function,

A↑↑(k,ω) ≡ − 1

π
ImG↑↑(K), (13)

and the rf-transition strengths �(kx,ω) and �(ω). To take into
account the experimental energy resolution of the spectroscopy
γ ∼ 0.1ER [12], we replace the Dirac delta function [which
appears in A↑↑(k,ω)] by

δ (x) = γ /π

x2 + γ 2
. (14)

B. Integrated spectroscopy of bound molecules

In Fig. 3, we predict the integrated rf spectroscopy of a
spin-orbit-coupled Fermi gas at B = 201.6 G and T = 0.6TF .
With increasing the strength of Raman beams from 0 to
4ER , the atomic and pair peaks shift to the higher and lower
frequencies, respectively, in qualitative agreement with the
experimental observation in Fig. 1(c). At this interaction
parameter [1/(kF as) � 0.66], the red shift of pair peaks
may be understood from the binding energy of pairs in the
two-body limit: the stronger effective Zeeman field h, the

FIG. 3. (Color online) Evolution of the predicted integrated rf
spectroscopy as a function of the Raman coupling strength. Here,
1/kF as = 0.66, T = 0.6TF , and kF = 1.6kR . The inset shows a linear
contour plot of the predicted momentum-resolved spectroscopy at
�R = 2ER .

FIG. 4. (Color online) (a) Predicted phase diagram of a strongly
interacting spin-orbit-coupled Fermi gas at �R = 1.5ER and kF =
1.6kR . (b)–(d) Linear contour plots of the zero temperature
momentum-resolved rf spectroscopy across the Feshbach resonance,
in arbitrary units. The inset in (a) shows the momentum-resolved rf
spectroscopy at the pseudgap temperature T ∗ in the unitary limit. In
theoretical calculations, we have set ω3↑ = 0.

smaller binding energy of two-particle bound states [22]. In
the inset, we show the prediction of the momentum-resolved
rf spectroscopy at �R = 2ER . It is highly asymmetric as a
function of momentum. The predicted atomic response is
in good agreement with the experimental observation for a
noninteracting spin-orbit-coupled Fermi gas [11,12].

C. Momentum-resolved spectroscopy near Feshbach resonances

We now turn to the rf spectroscopy in the vicinity of
the Feshbach resonance. In Fig. 4(a), we plot the superfluid
transition temperature Tc and the pairing breaking (pseudogap)
temperature T ∗ of a spin-orbit-coupled Fermi gas at �R =
1.5ER and kF = 1.6kR . The pseudogap temperature is calcu-
lated using the standard BCS mean-field theory without taking
into account the preformed pairs (i.e., �pg = 0) [21]. We find
that the region of superfluid phase is suppressed by spin-orbit
coupling. In particular, at resonance the superfluid transition
temperature is about Tc � 0.129TF , smaller than the measured
value of Tc � 0.167(13)TF [23] or the predicted value of
Tc � 0.15TF (under the same pseudogap approximation) for a
unitary Fermi gas in the absence of spin-orbit coupling. Thus,
experimentally it becomes more challenge to observe a spin-
orbit-coupled fermionic superfluid in the present experimental
scheme.

In Figs. 4(b)–4(d), we show the zero-temperature
momentum-resolved rf-spectroscopy across the resonance. On
the BCS side (1/kF as = −0.5), the spectroscopy is dominated
by the response from atoms and shows a characteristic
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high-frequency tail at kx < 0 [11,12,24]. Towards the BEC
limit (1/kF as = 0.5), the spectroscopy may be understood
from the picture of well-defined pairs and shows a clear
twofold anisotropic distribution [25]. The spectroscopy at the
resonance is complicated and should be attributed to many-
body fermionic pairs. The change of spectroscopy across
resonance is continuous, in accord with a smooth BEC-BCS
crossover [2].

In the inset of Fig. 4(a), we show the momentum-resolved
rf spectroscopy at the resonance and at the pseudogap pairing
temperature T ∗. It is interesting that the anisotropic distribu-
tion survives well above the superfluid transition temperature
Tc. An experimental observation of such a spectroscopy

would be a strong indication of the anisotropic pseudogap
pairing of a spin-orbit-coupled Fermi gas in its normal
state.

D. Experiment vs theory

In Fig. 5, we examine our many-body theory by comparing
the theoretical predictions with the experimental data for
integrated rf spectroscopy. At the qualitative level, we do not
consider the trap effect and take the relevant experimental
parameters at the trap center. Otherwise, there are no adjustable
free parameters used in the theoretical calculations. As shown
in Fig. 5, we find a qualitative agreement between theory and

FIG. 5. (Color online) Comparison between theory and experiment for the integrated rf spectroscopy. In theoretical simulations, we use
�R = 1.5ER , kF = 1.6kR , and T = 0.6TF , according to the experimental setup. The red solid circles (red solid lines) and dark open circles
(dark dashed lines) show, respectively, the experimental data (theoretical predictions) in the presence and absence of spin-orbit coupling with
Raman detuning δ = 0. The dimensionless interaction parameter 1/(kF as) in (a), (b), and (c) are 0.89, 0.66, and 0.32, respectively.
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experiment, both of which show the red shift of the response
from fermionic pairs. As we have already discussed in
Sec. III B, a red shift of the pairing response may be understood
from the two-body limit. Its prediction or existence therefore
seems to depend weakly on the accuracy of the theory. Note
that, near Feshbach resonances our many-body pseudogap
theory is only qualitatively reliable. It cannot explain well
the separation of atomic and pair peaks in the observed
integrated rf spectrum. More seriously, it fails to take into
account properly the strong interactions between atoms and
pairs [see, for example, Fig. 5(c)]. However, our theory does
reproduce exactly the two-body result in the BEC limit and thus
capture the essential feature of the red shift due to spin-orbit
coupling.

IV. CONCLUSION

In conclusion, we have investigated experimentally and the-
oretically rf spectroscopy and fermionic pairing in a strongly
interacting spin-orbit-coupled Fermi gas of 40K atoms near a
Feshbach resonance. A red shift of the response from fermionic
pairs, induced by spin-orbit coupling, is observed in integrated
rf spectroscopy below the resonance, in qualitative agreement
with a many-body T-matrix calculation. Momentum-resolved
rf spectroscopy of fermionic pairs has been predicted across
the resonance at all temperatures, showing a characteristic
anisotropic distribution. This is to be confronted in future
experiments.

We note that the typical experimental temperature in this
work is about 0.6TF . In the future, we wish to reduce the
temperature of the strongly interacting Fermi cloud of 40K
atoms down to 0.2TF , close to the superfluid transition. This
is encouraged by a recent calculation by Wei and Mueller
[18], who showed that the heating of the cloud due to Raman
transition is not significantly affected by the magnetic field
needed for Feshbach resonances.

Theoretically, it is possible to solve the many-body
T-matrix theory without the pseudogap approximation. On
the other hand, at the relatively high temperature T ∼ 0.6TF ,
alternatively we may use a virial expansion theory to obtain
quantitative predictions for the radio-frequency spectroscopy
in harmonic traps [27–29]. These possibilities will be ad-
dressed in later studies.
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APPENDIX: PSEUDOGAP APPROXIMATION

The pseudogap approximation is advanced by the Chicago
group [21]. In this approximation the T matrix is separated into
two parts, t(Q) = tsc(Q) + tpg(Q), so that the contribution
from the superfluid order parameter for condensed pairs
�2

sc,

tsc(Q) = −�2
sc

T
δ (Q) , (A1)

and the contribution from the pseudogap for uncondensed
pairs,

�2
pg ≡ −

∑
Q�=0

tpg(Q), (A2)

become explicit. The full pairing order parameter is given
by �2 = �2

sc + �2
pg . Accordingly, we have the self-energy

�(K) = �sc(K) + �pg(K) [21], where

�sc = −�2
sc(iσy)G̃0(K)(iσy) (A3)

and

�pg = −�2
pg(iσy)G̃0(K)(iσy). (A4)

To obtain �pg in the above equation, it is assumed that the pair
propagator χ (Q) peaks around Q = 0 [21].

We note that, at zero temperature the pseudogap approx-
imation is simply the standard mean-field BCS theory, in
which

�(K) = −�2(iσy)G̃0(K)(iσy). (A5)

Above the superfluid transition, however, it captures
the essential physics of fermionic pairing and therefore
should be regarded as an improved theory beyond mean
field.

To calculate the pseudogap �pg , we approximate

t−1
pg (Q � 0) = Z[iνn − �q + μpair], (A6)

where the residue Z and the effective dispersion of pairs �q =
h̄2q2/2M∗ are to be determined by expanding χ (Q) about
Q = 0 [21,26]. The form of tpg(Q) leads to

�2
pg(T ) = Z−1

∑
q

fB(�q − μpair), (A7)

where fB(x) ≡ 1/(ex/kBT − 1) is the bosonic distribution
function. We arrive finally at two coupled equations, the gap
equation,

1

U0
+ χ (Q = 0) = Zμpair, (A8)

and the number equation,

n =
∑
K

TrG(K), (A9)

to determine the superfluid order parameter �sc and the chem-
ical potential μ, respectively, for a given set of parameters.
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